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Critical Behavior for Maximal Flows on the Cubic
Lattice

Yu Zhang1
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Let F0 and Fm be the top and bottom faces of the box [0, k]_[0, l]_[0, m]
in Z3. To each edge e in the box, we assign an i.i.d. nonnegative random
variable t(e) representing the flow capacity of e. Denote by 8k, l, m the maximal
flow from F0 to Fm in the box. Let pc denote the critical value for bond percola-
tion on Z3. It is known that 8k, l, m is asymptotically proportional to the area
of F0 as m, k, l � �, when the probability that t(e)>0 exceeds pc , but is of
lower order if the probability is strictly less than pc . Here we consider the criti-
cal case where the probability that t(e)>0 is exactly equal to pc , and prove that

lim
k, l, m � �

1
kl

8k, l, m=0 a.s. and in L1

The limiting behavior of related to surfaces on Z3 are also considered in this
paper.
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1. INTRODUCTION

We begin with the notations in [K] to introduce flows through a medium.
Consider the Z3 lattice. To each edge e # Z 3, we assign a random non-
negative value t(e). It is assumed that all t(e) are independent and have the
same distribution function F. More formally, as a sample space we take

0= `
e # Zd

[0, �)
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and a product measure P on 0. We interpret t(e) as a capacity. In other
words, t(e) is the maximal amount of fluid which can flow through e per
unit time. For given t(e) we denote by 8k, l, m the maximal flow through the
restriction of Z3 to the box

B(k, l, m) :=[0, k]_[0, l]_[0, m]

from its bottom face

F0 :=[0, k]_[0, l]_[0]

to its top face

Fm :=[0, k]_[0, l]_[m]

Indeed, it follows from the definition in [K] that such a flow is an
assignment of nonnegative numbers g(e) and a direction to all the edges e
in B(k, l, m) such that

0� g(e)�t(e) for all e

and such that for each vertex v outside F0 _ Fm the total inflow equals the
total outflow, that is,

:
+

v

g(e)= :
&

v

g(e)

where �+ (�&) is the sum over all edges incident to v and directed towards
v (away from v). For any such assignment, the flow from F0 to Fm is
defined as

:
+ g(e)&:

& g(e)

where �+ (�&) is the sum overall edges e with exactly one endpoint in F m

and e directed towards this endpoint (away from this endpoint). The maxi-
mum of this expression over all possible choices of g( } ) is 8k, l, m . The max-
flow min-cut theorem allows us to express 8k, l, m in a different way. A set
of edges E is said to separate F0 from Fm in B(k, l, m) if there is no path
in B(k, l, m)"E from F0 to Fm . We call E an (F0 , Fm) cut if E separates F0

from Fm in B(k, l, m) and if E is minimal in the sense that no proper subset
of E separates F0 from Fm . To each set of edges E we assign value

V(E )= :
e # E

t(e)
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The max-flow and min-cut theorem (see [Bo]) states that

8k, l, m=min[V(E ) : E an (F0 , Fm) cut] (1.1)

Before introducing some other functions, we need to introduce the
plaquettes in the Z3 lattice. For each edge e, we denote by ?(e) the unit
square perpendicular to e and bisecting e. We shall call these unit squares
of the form

[ j1& 1
2 , j1+ 1

2]_[ j2& 1
2 , j2+ 1

2]_[ j3& 1
2 , j3+ 1

2] for j i # Z, i=1, 2, 3

Thus the plaquettes are square faces with the corners on

Z3+( 1
2 , 1

2 , 1
2)

We use L to denote these plaquettes. Clearly, plaquettes are associated in
a one to one way to edges of Z3. We set

t(e)=t(?)

if e is the edge associated to the plaquette ?. Specially, if we have an edge
set E on Z3, we denote by E* as the associated set in L and by �E* the
boundary of E*. With these definitions, some other functions are also
introduced by [K] in order to investigate the limit behavior of 8. Let

{k, l=inf[V(E ) : E a cut over [0, k]_[0, l], where �E*

consists of plaquettes of L on the perimeter of

[&1
2 , k+ 1

2]_[&1
2 , l+ 1

2]_[ 1
2] for k, l # Z ] (1.2)

Here we say that a set E of edges of Z3, or the set E* of associated plaquettes,
separates � from &� over S for a given set S/Z2 if there is no path on
Z3 in S_Z"E from S_[&N ] to S_[N ] for some (and hence all suf-
ficiently large) N>0. Similarly we call E or E* a cut over S if E separates
&� from � over S, but no proper subset of E separates &� from �
over S. It follows from a subadditive argument (see [K]) that if

Eert(e)<� for some r>0

then there exists a number &=&(F )�Et(e) such that

lim
k, l � �

1
kl

{k, l=& a.s. and in L1 (1.3)
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Other functions are also introduced in [K].

:k, l=inf[V(E ) : E separates &� from � over [0, k]_[0, l],

where �E* consists of the plaquettes of L on the perimeter

of [&1
2 , k+ 1

2]_[&1
2 , l+ 1

2]_R for k, l # Z ] (1.4)

and

;k, l=inf[V(E ) : E separates &� from � over [0, k]_[0, l],

where �E* contains the point(&1
2 , &1

2 , 1
2)] (1.5)

Before we state the limit behaviors of 8, :, and ;, we need to intro-
duce some basic percolation results. Consider percolation on the Z3 lattice
in which all edges are independently occupied with probability p and
vacant with probability 1& p. The value of an edge is also denoted by 1 or
0 if the edge is occupied or vacant. Next, we will define the occupied
cluster. The cluster of vertex x, Cx , consists all vertices which are connected
by an occupied path, where an occupied path is a nearest-neighbor path on
Z3 such that all of its edges are occupied. For brevity, we write C for the
cluster of the origin. For any collection A of vertices, |A| denoted the
cardinality of A. The percolation probability is

%( p)=Pp( |C |=�)

and the critical probability is

pc=sup( p: %( p)=0)

where Pp is the product measure on

`
e # Zd

[0, 1]

Similarly, we can consider percolation on H, where H is a graph whose
vertices are in one-to-one correspondence with the plaquettes and two of
whose vertices are adjacent if and only if the corresponding plaquettes
intersect. We may think of these vertices as being located at the centers
of the corresponding plaquettes, or at the midpoints of edges of Z3.
For example, the vertex at (0, 0, 1�2) has neighbors in H at (\1�2, 0, a),
(0, \1�2, a), (\1, \1�2, a), (\1�2, \1, a) for a=0, 1. By the translation
invariance, we may choose a vertex, denoted by 0* as the origin. Now we
consider all vertices in H are independently occupied or vacant with prob-
ability p or 1& p. The cluster of vertex x, C*(x) consists all vertices which
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are connected by an occupied path, where occupied path is a nearest-
neighbor path on H. Similarly, let

%*( p)=Pp( |C*(0*)|=�)

and

p*=sup( p: %*( p)=0).

It is known that 1�27� p*� pc (see [K]).
Let us return to discuss the flow problem. For any distribution F, we

say e is vacant or occupied if t(e)=0 or t(e)>0. By comparing 8k, l, m , :k, l

and ;k, l with {k, l , it is proved in [K] that if F(0)< p* and if m(k, l ) � �
as k�l � � in such a way that for some $>0,

k&1+$ log m(k, l ) � 0

then

lim
k, l, m � �

1
kl

8k, l, m= lim
k, l � �

1
kl

{k, l= lim
k, l � �

1
kl

:l, k

= lim
k, l � �

1
kl

;k, l=& a.s. and in L1 (1.6)

for &>0. On the other hand, if F(0)>1& pc , it is also proved in [K] that

8k, l, m=0 a.s. for all sufficiently large k, l, m

and

lim
k, l � �

1
kl

{k, l= lim
k, l � �

1
kl

: l, k= lim
k, l � �

1
kl

;l, k=0 a.s. and in L1 (1.7)

whenever m(k, l ) � � as k, l � � in such a way that

lim inf
k, l � �

m(k, l )
log kl

>C

for some constant C>0. It is conjectured that the limits in (1.6) also exist
(see [K]) when F(0) is between [ p*, 1& pc]. In fact, if we assume that
limits in (1.6) exist in [ p*, 1& pc), then it can be shown (see [CC]) that
&>0 or &=0 if F(0)<1& pc or F(0)>1& pc . In other words, 1& pc is a
critical point for the maximal flow on [0, k]_[0, l]_[0, m] since the
flows range from nothing to O(kl ). Clearly, it is more interesting to ask the
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behavior of the flows at 1& pc . In fact, it is also conjectured by Harry
Kesten (see [K]) that the limits in (1.6) exist and vanish at 1& pc . Here
we answer these questions at 1& pc affirmatively.

Theorem. If F(0)=1& pc and F(0&)=0 and if in addition
Et(e)<�, then for any l>0

lim
k, m � �

1
kl

8k, l, m=0 (1.8)

for any k>0

lim
l, m � �

1
kl

8k, l, m=0 (1.9)

and

lim
k, l, m � �

1
kl

8k, l, m=0 (1.10)

where k, l, m in (1.10) go to � without any restriction such as the condi-
tion in (1.6). Regarding to : and ;,

lim
k, l � �

1
kl

{l, k= lim
k, l � �

1
kl

: l, k= lim
k, l � �

1
kl

;l, k=0 a.s. and in L1 (1.11)

Remarks. 1. The results in the theorem can be shown by using the
same argument for any d>3.

2. The proof of the theorem cannot help us to show the existence of
the limits in (1.6) when F(0) # [ p*, 1& pc). In fact, it is possible to show
the existence of the limits in (1.6) when F(0) # [0, pc). But we do not have
any idea when F(0) # ( pc , 1& pc).

3. For d=2, most problems such as (1.6) and (1.8) are established
in [GK].

Before giving a formal proof for the theorem, we would like to present
an intuitive idea to show why the theorem is true. Let us consider a simpler
case, that is t(e) only takes value 1 or 0. In this case, 8k, l, m will be the
number of disjoint occupied paths from F0 to Fm inside [0, k]_[0, l]_
[0, m]. For each such occupied path, if the starting vertex at F0 is fixed,
it follows from Theorem 1.1 in [BGN] that the probability of the existence
of such a path goes to zero as m � �. Then if there is some stationary
property for the number of these paths, then the theorem will follows from
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a standard ergodic theorem. However, we do not have the stationary
property for the number of the paths. Therefore, we have to use another
stationary process �x # [0, k]_[0, l] Rx(m) (see the detailed definition in the
following section) to control these paths. The theorem follows when we
show

lim
k, l, m � �

1
kl

:
x # [0, k]_[0, l]

Rx(m)=0 a.s. and in L1

2. PROOF

For any event A generated by [t(e): e # S], we denote by T (A) the
event by shifting each e # S one unit to the positive X direction. Clearly,
T is measure preserving. On the other hand, it is easy to check

lim
n � �

P(A & T n(B))=P(A) P(B)

for any events A and B, since we are working on the product space. There-
fore, T is of mixing type. We will use this property later. Let %+

m ( p) be the
probability that there exists an infinite occupied cluster on

H=Z2_[0, 1,..., n,...]

from the origin to the boundary of [&m, m]3 & H. Then it follows from
Theorem 1.1 in [BGN] that

lim
m � �

%+
m ( pc)=0 (2.1)

For each x # [0, �)2_[0], let Bx be the five bonds in H which use x
as their common vertex. Denote by

Rx(m)={V(Bx)
0

if there exists an occupied path from x to [Z=m] in H
otherwise

where [Z=m] is the plane with an equation that Z=m. Then [Rx(m)]
is stationary under the translation T. Clearly,

ERx(m)�5Et(e) %+
m ( pc)

It follows from the Birkhoff ergodic theorem

lim
k � �

1
kl

:
x # [0, k]_[0, l]

Rx(m)=ER0�5%+
m ( pc) E(e) a.s. and in L1 (2.2)
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where 0 is the origin. Note that

Rx(m+1)�Rx(m) (2.3)

For any =>0, we take m0 such that

%+
m0

( pc)�
=

6Et(e)

After that, it follows from (2.2) that for m0 we take k0 such that

1
kl

:
x # [0, k]_[0, l]

Rx(m0)�=

for all k�k0 . It then follows from (2.3) that for all m�m0 , k�k0

1
kl

:
x # [0, k]_[0, l]

Rx(m)�
1
kl

:
x # [0, k]_[0, l]

Rx(m0)

Therefore,

lim
k, m � �

1
kl

:
x # [0, k]_[0, l]

Rx(m)=0 a.s. and in L1 (2.4)

We also need to construct another variable R$ as follows. For each
x # [0, k]_[0, l]_[0],

V(Bx) _ an occupied path from x to [Z=m]
R$x(m)={ in [0, k]_[0, l]_[0, m]

0 otherwise

Clearly, R$x may not be stationary but

R$x(m)�Rx(m) (2.5)

Now we would like to compare

8k, l, m and :
x # [0, k]_[0, l]

R$x(m)

Let Ix be the indicator of the event that there exists an occupied path from
x to [Z=m] in [0, k]_[0, l]_[0, m] for x # [0, k]_[0, l]_[0]. Let
C+

x be the occupied cluster in [0, k]_[0, l]_[0, m] which contains x for
x # [0, k]_[0, l]_[0] and let 2x be the outside vacant edge boundary of
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C+
x in [0, k]_[0, l]_[0, m]. In other words, for any edge in 2x there

exists an occupied path from one of its vertices to x in [0, k]_[0, l]_
[0, m] and there exists another path in [0, k]_[0, l]_[0, m] from the
other vertex to Fm without using any edge in C +

x , and the edge is vacant.
Denote by

Q= .
[x # F0 : Ix=0]

2x .
[x # F0 : Ix{0]

Bx

Now we show that Q separates Fm from F0 on [0, k]_[0, l]_[0, m].
Suppose that Q does not. Then there exists a path r inside [0, k]_[0, l]_
[0, m] from x # [0, k]_[0, l]_[0] to Fm which does not use any edge
of Q. If Ix=0, we denote by

r1=r & C +
x and r2=r"r1

Note that r1 or r2 may not be path anymore, but for each edge in r1 there
exists an occupied path from one of its vertices to x. On the other hand,
since Ix=0, there does not exist an occupied path from x to Fm inside
[0, k]_[0, l]_[0, m] so that r2 contains an edge such that the edge is
connected to r1 and there exists a path outside of C +

x from the edge to Fm .
In fact, to see this, we can go along r from x to the last vertex in C +

x such
that, after the vertex, the rest path of r is outside of C +

x . The edge which
connects the vertex in the rest path of r is what we are looking for. We
write b for the edge in r2 . Note that if b is occupied, then it has to be
in Cx . But by the definition of r2 , b � Cx so that b cannot be occupied. On
the other hand, there exist an occupied path connecting b to x inside C +

x

and another path connecting b to Fm outside C +
x so that b # 2x . Therefore,

since 2x/Q, r has to use some edge in Q which contradicts the assump-
tion. If Ix{0, any path inside [0, k]_[0, l]_[0, m] from x to Fm has to
use at least one of bonds in Bx . Note that Bx/Q. Therefore, Q indeed
separates F0 from Fm . Let Q1/Q which is a minimal cut separating F0

from Fm . Note that V(2x)=0 for each x so that

V(Q1)� :
x # [0, k]_[0, l]

R$x(m) (2.6)

On the other hand, Q1 is a cut separating F0 from Fm on [0, k]_[0, l]_
[0, m] so that

8k, l, m�V(Q1) (2.7)

Therefore, (1.8) in the theorem follows from (2.7), (2.5) and (2.4).
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Clearly, by the symmetry and (1.8), (1.9) follows.
Now we show (1.10). It follows from the definition of Rx(m) that

:
x # D1 _ D2

Rx(m)= :
x # D1

Rx(m)+ :
x # D2

Rx(m)

if D1 & D2=<. It follows from a multi-parameter subadditive ergodic
theorem (see Theorem 2.4 in [AK] and Theorem 1.1 in [S]) that

lim
k, l � �

1
kl

:
x # [0, k]_[0, l]

Rx(m)=ER0�5%+
m ( pc) Et(e) a.s. and in L1

(2.8)

With this observation, (2.5)�(2.8), we have

0�lim sup
k, l, m

1
kl

8k, l, m� lim sup
k, l, m � �

1
kl

:
x # [0, k]_[0, l]

Rx(m)

� lim
k, l � �

1
kl

:
x # [0, k]_[0, l]

Rx(m0)�= (2.9)

(1.10) follows from (2.9).
Now to show (1.11) we only need to show that

lim
k, l � �

{k, l

kl
=0 a.s. and in L1

since {k, l�:k, l and {k, l�;k, l . We take k�l0 and l�l0 for l0 that satisfies

%+
log l0

( pc)�=

for a given =>0. Let

R1=H & [0]_[0, l]_[0, �),

R2=H & [k]_[0, l]_[0, �),

R3=H & [0, k]_[0]_[0, �),

R4=H & [0, k]_[l ]_[0, �)

that is the four side-faces of [0, k]_[0, l]_[0, �) and let

R=R1 _ R2 _ R3 & R4
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For each k, we divide [0, k]_[0, l] to

D1=[log l, k&log l]_[log l, l&log l]_[0]

and

D2=[0, k]_[0, l]_[0]"D1

Note that

D1 _ D2=F0

For each x # D1 , let

Sx={V(Bx)
0

_ an occupied path from x to R in [0, k]_[0, l]_[0, �)
otherwise

For each x # D2 , let Sx=V(Bx). Note that [Sx] is not stationary under T
so that we need to construct another sequence. Let

S$x={V(Bx)
0

_ an occupied path from x to x+B(log l, log l, log l ) in H
otherwise

Then [S$x] is stationary under T on [log l, �)_[log l, l&log l]. Note that
if there exists an occupied path from x to R in [0, k]_[0, l]_[0, �) for
x # D1 , then there exists an occupied path from x to x+B(log l, log l, log l )
so that

Sx�S$x for x # D1 (2.10)

It follows from the Birkhoff ergodic theorem that

lim
k � �

1
(k&2 log l )(1&2 log l )

:
x # D1

S$x

=ES$0�5Et(e) %+
log l ( pc)�5Et(e) = a.s. and in L1 (2.11)

Clearly, by (2.10)

lim
k � �

1
k(l&2 log l )

:
x # D1

Sx�5Et(e) %+
log l( pc)�5Et(e) = a.s. and in L1

(2.12)
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Therefore, by (2.11)�(2.12)

lim
k � �

1
kl

:
x # F0

Sx�6Et(e) = a.s. and in L1 (2.14)

Let Ix be the indicator of the event that there exists an occupied path from
x to [R] in [0, k]_[0, l]_[0, �) for x # [0, k]_[0, l]_[0].

We now consider

Q= .
[x # D1 : Ix=0]

2x .
[x # D1 , Ix{0]

Bx .
x # D2

Bx & H

For each u=(u1 , u2 , u3) such that (u1 , u2) is in the boundary of
[0, k]_[0, l], then u # D2 . Therefore, the edge which connects u and
v=(u1 , u2 , u3+1) is in Bu/Q. With the observation

[&1
2 , k+ 1

2]_[&1
2 , l+ 1

2]_[ 1
2]/�Q*

Now we show Q separates &� from � over [0, k]_[0, l]. To show
this, we suppose that Q does not. Then there exists a path, denoted by r
from x # [0, k]_[0, l]_[0] to R without using Q. Suppose that Ix{0. It
would contradict since any path from x to R inside [0, k]_[0, l]_[0, �)
has to use one of bonds Bx . Now we suppose that Ix=0. It follows from
the same proof as we did for 8k, l, m that we could also get a contradiction.
Therefore, Q separates &� from � over [0, k]_[0, l]. Similarly, let
Q1/Q which is a minimum cut over [0, k]_[0, l] with

[&1
2 , k+ 1

2]_[&1
2 , l+ 1

2]_[ 1
2]/�Q1*

so that

{k, l�V(Q1)�V(Q) (2.15)

Note that V(2x)=0 so that

V(Q)= :
x # F0

Sx

Therefore, it follows from (2.15) and (2.12) that for l�l0

lim
k � �

{k, l

kl
�6Et(e) = a.s. and in L1 (2.16)
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We know (see (1.4) in [K]) that

lim
k, l � �

{k, l

kl
=inf

k, l {
E{k, l

kl = (2.17)

so that (1.11) follows from (2.16) and (2.17).
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